Contribution of extracellular negatively charged residues to ATP action and zinc modulation of rat P2X2 receptors.

نویسندگان

  • Sean C Friday
  • Richard I Hume
چکیده

Two histidines are known to be essential for zinc potentiation of rat P2X2 receptors, but the chemistry of zinc coordination would suggest that other residues also participate in this zinc-binding site. There is also a second lower affinity zinc-binding site in P2X2 receptors whose constituents are unknown. To assess whether the extracellular acidic residues of the P2X2 receptor contribute to zinc potentiation or inhibition, site-directed mutagenesis was used to produce alanine substitutions at each extracellular glutamate or aspartate. Two electrode voltage clamp recordings from Xenopus oocytes indicated that 7 of the 34 mutants (D82A, E85A, E91A, E115A, D136A, D209A, and D281A) were deficient in zinc potentiation and one mutant (E84A) was deficient in zinc inhibition. Additional tests on cysteine mutants at these eight positions indicated that D136 is the only residue that is a strong candidate to be at the potentiating zinc-binding site, and that E84 is unlikely to be at the inhibitory zinc-binding site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular basis of selective antagonism of the P2X1 receptor for ATP by NF449 and suramin: contribution of basic amino acids in the cysteine-rich loop

BACKGROUND AND PURPOSE The cysteine-rich head region, which is adjacent to the proposed ATP-binding pocket in the extracellular ligand-binding loop of P2X receptors for ATP, is absent in the antagonist-insensitive Dictyostelium receptors. In this study we have determined the contribution of the head region to the antagonist action of NF449 and suramin at the human P2X1 receptor. EXPERIMENTAL ...

متن کامل

Differential modulation by copper and zinc of P2X2 and P2X4 receptor function.

Differential Modulation by Copper and Zinc of P2X2 and P2X4 Receptor Function. The modulation by Cu2+ and Zn2+ of P2X2 and P2X4 receptors expressed in Xenopus oocytes was studied with the two-electrode, voltage-clamp technique. In oocytes expressing P2X2 receptors, both Cu2+ and Zn2+, in the concentration range 1-130 microM, reversibly potentiated current activated by submaximal concentrations ...

متن کامل

An intersubunit zinc binding site in rat P2X2 receptors.

P2X receptors are ATP-gated ion channels made up of three similar or identical subunits. It is unknown whether ligand binding is intersubunit or intrasubunit, either for agonists or for allosteric modulators. Zinc binds to rat P2X2 receptors and acts as an allosteric modulator, potentiating channel opening. To probe the location of this zinc binding site, P2X2 receptors bearing mutations of the...

متن کامل

The Intracellular Amino Terminus Plays a Dominant Role in Desensitization of ATP-gated P2X Receptor Ion Channels*

P2X receptors show marked variations in the time-course of response to ATP application from rapidly desensitizing P2X1 receptors to relatively sustained P2X2 receptors. In this study we have used chimeras between human P2X1 and P2X2 receptors in combination with mutagenesis to address the contribution of the extracellular ligand binding loop, the transmembrane channel, and the intracellular reg...

متن کامل

The role of histidine residues in modulation of the rat P2X(2) purinoceptor by zinc and pH.

P2X(2) receptor currents are potentiated by acidic pH and zinc. To identify residues necessary for proton and zinc modulation, alanines were singly substituted for each of the nine histidines in the extracellular domain of the rat P2X(2) receptor. Wild-type and mutant receptors were expressed in Xenopus oocytes and analysed with two-electrode voltage clamp. All mutations caused less than a 2-fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurochemistry

دوره 105 4  شماره 

صفحات  -

تاریخ انتشار 2008